

Update on the status and prospects of microalgae for biofuels and bioenergy

DI (FH) Andrea Sonnleitner

Vienna, 29.09.2016

Overview

- IEA Bioenergy Inter-Task Report
- Support and funding for algae
- Overview of technology routes
- Biorefineries and bioproducts
- Techno-economic analysis
- Sutainability and LCA
- General trends worldwide
- Situation in Austria
- Key messages

IEA Bioenergy Report 2016 State of Technology Review – Algae Bioenergy

- Inter-Task Report of IEA
 Bioenergy Task 34, 37, 38, 39, 42
- Update to Task 39 report published in 2010
- "Algaehype" and overly optimistic outlook had been relativized
- Tremendous progress in technical feasibility – projects, pilot plants, demo plants

Support and funding for algae technology development in North America

- NAABB National Alliance for Algal Biofuels and Bioproducts (\$44M)
- 3 integrated biorefinery demonstration plants (\$97M)
 - Solazyme lignocellulosis to biodiesel and renewable diesel, heterotrophic algae
 - Algenol light and CO₂ to ethanol, cyanobacteria, development of economic PBR
 - Sapphire renewable biocrude for upgrading to jetfuel and diesel fuels, 121 ha plant
- Other funded consortia (CAB-Comm, SABC, Cornell Marine Algal Biofuels Consortium, ATP³, RAFT)
- **Canada**: ACC Algal Carbon Conversion Flagship Program

Support and funding for algae technology development in Europe

- AQUAFUELS project (2009)
- AlgaeCluster (€31M, each 10 ha)
 - InteSusAI Combination of photobioreactors and fermentors for production of biofuels (biodiesel)
 - All-Gas Mixture of algae and bacteria to clean wastewater and produce fuel
 - BioFAT Coupled production of biodiesel and bioethanol
- Other EU projects: AlgaeBioGas, DEMA, D-Factory, EnAlgae, Fuel4Me

Overview of technology routes

Biomass production

- Estimation best case: 280-410 t/ha/a
- Demonstrated yields: 60-182 t/ha/a
- Biochemical and thermochemical conversion of biomass
 - Biodiesel
 - Renewable diesel
 - Jet Fuel
 - Bioethanol

Biorefinery approach

Biorefineries and bioproducts

A biorefinery is defined as a facility in which algal biomass can be sustainably processed into a spectrum of bio-based products (food, animal feed, chemicals, and materials) and bioenergy products (biofuels, power and/or heat).

Research Programm Framework

Whole Chain Approach

- Multidisciplinary Approach
- Bridge from Fundamental Research to Applications

Source: Own compilation

Techno-economic analysis I

- Assessment of process feasibility and commercial viability
- "What is the cost of algal biofuels?"

Complexity of TEA

- Many inputs and outputs
- Inter-relationsships
- Different algae production processes
- Constant further development and improvement
- Unsafe data sources (infancy of technolgies)
- Biological parameters and reactor design
- Local conditions (taxes, financial support, ...)

Vienna, 29.09.2016 Slide 8

List of **important parameters** for algae cultivation

	Metric	Unit	Notes	
	1. Cultivation: Continuous data - wea	ther		
	Precipitation	cm/day	Precipitation data (as available from weather events)	
	Air temperature	°C	Minimum hourly basis	
	Dew point temperature	°C	Hourly basis	
	Solar radiation/insolation	W/m ²	Hourly basis	
	Wind speed	m/s	Hourly basis	
	Air pressure	mm Hg	Hourly basis	
	2. Cultivation: Continuous data - culture			
	Water salinity	mg/L		
	Water pH	рН		
	Water temperature	°C		
	Dissolved oxygen	mg/L		
	Oxidation reductive potential	mV		
	Photosynthetically active radiation (PAR)	µmol/m ² sec	Hourly basis	
	3. Cultivation: Installation/logistics			
	Land use/cost		Upon installation	
	Polyethylene consumption	m³/ha		
enna, 29.09.2 de 9	Scale of production (pond/cultivation size)	ha		;
	Davis of an ambien		Chandles at the fall of an anti- fault on a supple matin	

innovatio

kompetenz

Techno-economic analysis III

Sensitivity analysis:

- Highest impact factor over the entire process are algal strain-specific biological parameters
 - Specific lipid content
 - Growth rate
- Further possibilites for optimization:
 - Operating days per year
 - Degree of nutrient recycle
- Production of algae biomass accounts for 65-85 % of total production costs of algal biofuel

- Cost range: 541 \$/t (OP, Arizona) to 10.177 \$/t

Vienna, 29.09.2016 (PBR, Niederlande)

Techno-economic analysis IV

High range of results in literature

→ Harmonisation is of tremendous importance

Slide 11

- 2 big challenges:
 - Harmonization and standardization of the models and methodologies
 - Model Validation Accessibility to pilot and demonstration experimental data from different locations

Sustainability and LCA I

- Life Cycle Assessment = tool to quantify environmental impacts
- LCA highly dependent on system boundaries and assumptions
- ISO LCA standard selection of system boundaries and functional units variable
- \rightarrow comparison of different LCA studies difficult
 - System boundaries, co-products, assumptions, infancy of technology, extrapolation of lab and pilot plants

Vienna, 29.09.2016 Slide 13

Sustainability and LCA II

Set of indicators for assessing sustainability of algal biofuels

	Set of indi	cators for	assessin	g sustai	inability of alga	al biofuels		Bioenergy
Category	Indicator	Unit	Potential environmental	Land use	Agricultural/Urban land occupation	m ² x year of land		ioel
5.7			effects Water holding		Natural land transformation	m ² x year of natural land		\triangleleft
Soil quality	Bulk density	g/cm ³	capacity, infiltration, crop nutrient availability	Resource depletion	Mineral resource depletion	kg Fe equivalent		e: IE,
		kg SO2 equivalent to	nutrient availability		Fossil resource depletion	kg oil eq		õ
	Terrestrial acidification	air kg 1,4		Biodiversity	Presence of taxa of special concern	presence	increased or decreased biodiversity	Source:
	Terrestrial ecotoxicity	dichlorobenzene to industrial soil			Habitat of taxa of special	ha	increased or decreased	
Water	Peak storm flow	L/s	Erosion, sediment		concern	na	biodiversity	
quantity	Minimum base flow	L/s	loading, infiltration Habitat degradation, lack of dissolved		Abundance of released algae	number/L	increased or decreased biodiversity	
			oxygen	Air quality	Tropospheric ozone	ppb	human and plant	
	Consumptive water use	feedstock production:	Availability of water for other		carbon monoxide	ppm	health human health	
	(incorporates base flow)	m³/ha/day; biorefinery:m3/day	uses		Total particulate matter less than 2.5 um diameter	µg/m³	visibility and human health	
Water quality	Nitrate concentration in	concentration (mg/L, ppm); export	Eutrophication, hypoxia,		(PM2.5)			
	streams (and export) Total phosphorus (P)	kg/ha/yr concentration (mg/L,	potability		Total particulate matter less than 10 um diameter (PM10)	µg/m³	visability and human health	
	concentration in streams (and export)	ppm); export kg/ha/yr	Eutrophication, hypoxia		Ozone depletion	kg CFC-11 equivalent		
	Salinity	Conductivity (no unit)	water composition change		Human air toxicity	kg 1,4 dichlorobenzene to urban air		
	Fresh/Marine water eutrofication	kg P and N equivalent			Photochemical oxidant formation	kg NMVOC compound equivalent to air		
	Water ecotoxicity	kg 1,4 dichlorobenzene		Productivity	Primary productivity or yield	gC/L/year or based	Climate change, soil fertility, cyclir	ng
Greenhouse gases	CO_2 equivalent emissions (CO_2 and N_2O)	kg C eq/GJ	Climate change, plant growth	Toductivity	rinnery productivity of yield	on chlorophyll a	of carbon and other nutrients	
And the second se								

Identified major sustainability concerns (NRC Report):

- Quantity of water and quantity of freshwater addition
- Supply of key nutrients for algal growth (N, P, CO2)
- Appropriate land area with suitable climate and resources
- Energy return on Investment (EROI)
- GHG emissions over the life cycle of algal biofuels

Comparison of 29 LCA studies (2009-2015)

- Results of each study were converted to 1 MJ as the functional unit
- Systems vary in terms of cultivation, harvesting, extraction and conversion processes, assumed growth rates and lipid content
- Productivities: 2 g DM m-2 day-1 to 65 g DM m-2 day-1
- Lipid Content: 7% to 50%

Sustainability and LCA V

0.5

- GHG emissions varied from -2,6 to 7,3 kg CO2eq MJ-1
- > 85% between -0,35 and 0,5 kg CO2eq MJ-1
 - Reasons for differences: Modelling choices (handling co-products, alternative cultivation, harvesting, extraction processes)

Soh et al. (2014) Adesanya et al. (2014) Khoo et al. (2013) Silis et al. (2013) Silis et al. (2013) Silis et al. (2013) Ajayebi et al. (2014) Houry and Freire (2015) Collet et al. (2014) Houra et al. (2014) Houra et al. (2014) Yanfen et al. (2012) Woertz et al. (2014) Passel et al. (2014) Passel et al. (2014) Bennion et al. (2014) Handler et al. (2014) Bennion et al. (2014) Bennion et al. (2014) Bennion et al. (2014) Bernion et al. (2014) Soratana et al. (2014) Soratana et al. (2014) Seratana et al. (2014) Mu et al. (2014) Mu et al. (2014) Mu et al. (2014)

Sustainability and LCA VI

7 studies reported negative GHG emissions

- Reasons: handling co-products via substitution, exclusion of combustion from system boundary
- > 60% reported emissions higher than fossil diesel

Reasons: energy-intensive technologies for cultivation and harvesting

		٠								-					+			8					•			*	•		•		•		•			*	•	
	:		•		-	:		9	•	•	•	•	*	8	*	+	•	-	•	•	\$	\$	•	+	1	*	•			•			•	•	•	•	•	
Soh et al. (2014)	Adesanya et al. (2014)	Khoo et al. (2011)	Sander and Murthy. (2010)	Sills et al. (2013)	Sills et al. (2013)	Ajayebi et al. (2013)	Brentner et al. (2013)	Chowdurry and Freire (2015)	Collet et al. (2014)	Holma et al. (2013)	Hou et al. (2011)	Lardon et al. (2009)	Pardo-Cardenas et al. (2012)	Stephenson et al. (2010)	Stratton et al. (2010)	Woertz et al. (2014)	Yanfen et al. (2012)	Zaimes and Khanna. (2013)	Zaimes and Khanna. (2014)	Passel et al. (2013)	Zaimes and Khanna. (2013)	Zaimes and Khanna. (2014)	Mu et al. (2014)	Bennion et al. (2015)	Fortier et al. (2014)	Handler et al. (2012)	Mu et al. (2014)	Bennion et al. (2015)	Mu et al. (2014)	Batan et al. (2010)	Soratana et al. (2013)	Soratana et al. (2014)	Stephenson et al. (2010)	Souza et al. (2015)	Brentner et al. (2011)	Mu et al. (2014)	Mu et al. (2014)	Mu et al. (2014)
DH		D	н		HTL							D	н								w	н			н	rL.		F	2		D	н		DD- ME	w	н	P	нт
EF	ну	brid	(OP	+PB	R)												0	P																PBR				

- Important for future LCA studies and for reduction of GHG emissions of microalgae biofuels:
 - Development of less energy-intensive technologies for cultivation and harvesting
 - Resource Assessment (RA) for algae operations
 - Conduction of uncertainty assessment
 - Future LCA studies on commercial systems

General trends worldwide

Redirecting focus to food, feed and speciality products

- Solazyme → TerraVia
- Solix Biofuels \rightarrow Solixalgredients
- Petroalgae \rightarrow Parabel
- HR Biopetroleum → Cellana
- **USA**: Great amount of business activities
- Asia: focus on production of seaweed as food crop
- Europe: many funded research projects, focus on microalgae for biofuels and cosmetica

Situation in Austria

Network Algae since 2013

- Funded by Austrian Ministry for Transport, Innovation and Technology
- Next Workshop February 2017
- First focus on biofuels changed to high value products
- Many projects and research in Austria
- Some companies as technology provider for cultivation systems
- Variety of production routes

Vienna, 29.09.2016 Slide 21

- Significant progress in algae cultivation and conversion with demonstrated deployment since 2010
- Low petroleum price challenges cost-competitve production of algal based fuels
- Algae-based industry greatly expanded including development of higher value products
- Algal biofuels not economically viable in the near to intermediate term
- Nearer term opportunity: Integraded Biorefinery

Vienna, 29.09.2016 Slide 22

DI (FH) Andrea Sonnleitner Researcher

T + 43 (0) 7416 52238-37 F + 43 (0) 7416 52238-99 andrea.sonnleitner@bioenergy2020.eu

BIOENERGY 2020+ GmbH Location Wieselburg | Gewerbepark Haag 3, A 3250 Wieselburg-Land

www.bioenergy2020.eu

